
Multilingual Verbalisation of Modular
Ontologies using GF and lemon

Brian Davis1, Ramona Enache2, Jeroen van Grondelle3, and Laurette
Pretorius4

1 DERI/NUIG, Ireland, brian.davis@deri.org
2 Chalmers University, Sweden, ramona.enache@chalmers.se

3 Be Informed, The Netherlands, j.vangrondelle@beinformed.com
4 University of South Africa, South Africa, pretol@unisa.ac.za

Abstract. This paper presents an approach to multilingual ontology
verbalisation of controlled language based on the Grammatical Frame-
work (GF) and the lemon model. It addresses specific challenges that
arise when classes are used to create a consensus-based conceptual frame-
work, in which many parties individually contribute instances. The ap-
proach is presented alongside a concrete case, in which ontologies are
used to capture business processes by linguistically untrained stakehold-
ers across business disciplines. GF is used to create multilingual gram-
mars that enable transparent multilingual verbalisation. Capturing the
instance labels in lemon lexicons reduces the need for GF engineering
to the class level: The lemon lexicons with the labels of the instances
are converted into GF grammars based on a mapping described in this
paper. The grammars are modularised in accordance with the ontology
modularisation and can deal with the different styles of label choosing
that occur in practice.

Keywords: Controlled Natural Languages, Ontology Verbalisation, Mul-
tilingualism, Ontology Lexicalisation, Natural Language Generation

1 Introduction

As the adoption of ontologies into enterprise application environments grows,
new audiences have to deal with ontologies beyond the traditional disciplines
that have done so in the past, such as knowledge engineers and ontologists.
These audiences range from business users, who need to take ownership of the
ontologies, to end users, such as customers or citizens, who are presented with
the services based on these ontologies. As the formalisms themselves are often
inaccessible to these new audiences, appropriate visualisations are important.
Our experience in practice is that business users often overcome their perception
of graph oriented visualisations being too technical when gaining experience,
but they remain a challenge for incidental reviewers and end users. Therefore,
verbalisation of ontologies into natural language is one of the approaches that is
crucial to make ontologies accessible to new audiences.

Being able to provide verbalisation in a multilingual manner is important:
Governments and enterprise often offer their products and services in interna-
tional contexts or to customers of different languages. For instance, Dutch Im-
migrations offers many of its services based on ontologies [1], and it typically
needs to interface with people that do not speak Dutch. Also, governments have
to deal with numerous international aspects in legislation when drafting their
national laws. Specifically in Europe, large parts of national legislation is either
heavily influenced by or originates in European legislation. Sharing ontologies
capturing such international legislation and being able to refer to them from lo-
cal ontologies offers important benefits in areas of productivity and traceability
across local practices.

In this paper, we present an approach for ontology verbalisation based on the
Grammatical Framework (GF) and the Lexicon Model for Ontologies (lemon)
that is essentially multilingual and addresses the particular challenges when
classes are chosen up front based on consensus, while multiple parties contribute
often changing instances individually.

We use the Be Informed business process platform5 as an example throughout
this paper. The verbalisation examples described in [2] are built upon and we
show how they can be generated across languages transparently. Finally, we
illustrate how the challenges in this example generalise across other examples,
including the generic case of verbalising Linked Open Data.

2 Related Work

Ontology Lexicalisation The lemon model builds on previous research for
designing lexica for interfacing with ontologies, in particular that of the LexInfo
[3] and LIR [4] models, as well as existing work on lexicon (meta-)models, in
particular the Lexical Markup Framework (ISO-24613:2008) [5]. In addition, it
builds on efforts to link resources via the Web to the ISOcat meta-data registry
[6]. lemon seeks to scale the modelling of lexical and linguistic information related
to concepts in ontologies from very simple to quite complex lexical entries. lemon
is closely related the SKOS project6, which attempts to model simple knowledge
organisation systems such as thesauri, classification schemes and taxonomies on
the Semantic Web.

Ontology Verbalisation and CNLs The application of CNLs for ontology au-
thoring and instance population is an active research area. Attempto Controlled
English7 (ACE) [7], is a popular CNL for ontology authoring and generation. It
is a subset of standard English designed for knowledge representation and tech-
nical specifications, and is constrained to be unambiguously machine-readable
into DRS - Discourse Representation Structure, a form of first-order logic. WYSI-
WYM (What you see is what you meant)[8], involves direct knowledge editing
5 http://www.beinformed.com/
6 http://www.w3.org/2004/02/skos/
7 http://www.ifi.unizh.ch/attempto/

with natural language directed feedback. A domain expert can edit a knowledge
base reliably by interacting with natural language menu choices and the subse-
quently generated feedback, which can then be extended or re-edited using the
menu options. With respect to GF, there have been a number of GF grammars
using ontologies/databases, such as the grammar representing the structure of
SUMO, the largest open-source ontology 8 as a type-theoretical grammar and
verbalise it in 3 languages [9]. Moreover, an ontology describing paintings and
a database describing over 8,000 artifacts from the Gothenburg City Museum
were used for generating descriptions of the paintings in 5 languages [10].

3 Challenges in Verbalising Modular Ontologies

3.1 New audiences for ontologies

An example where ontologies are used in business applications is Be Informed’s
business process platform. It allows representatives of many disciplines and do-
main experts to capture the definitions and constraints that the business process
must meet and have engines infer executable business processes and decision ser-
vices from them automatically. This provides business users with a large degree
of control and agility, as the constraints are easily changed and the process is
updated accordingly. The resulting processes are highly contextual and deal well
with exceptions: They allow professionals to influence their own work, and are
resilient to the effects of overrides as is described in [2].

When ontologies are used to infer business processes in this way, its stake-
holders get to interact with the underlying ontologies on a number of levels.
The first is obviously understanding the content of the ontology and the con-
sequences for the inferred business process. The ontology becomes part of the
system documentation and is used for validation and reviewing at specification
time or for reference when using and maintaining the services and its specifica-
tion/documentation. Also, the ontology driven services have user interfaces that
provide dialog to its end users and the ontology typically is the source of many of
the textual elements in that dialog, such as the questions asked, the captions in
forms, etc. Finally, the end results of the ontology driven services are also based
on the underlying ontology. In applications, these results might be represented
by generated documents or letters sent to customers. Specifically when decisions
are taken based on models, explaining the end result and the underlying argu-
ment have strong ties with the concepts and their textual representations in the
ontology.

Be Informed’s business processes are inferred from an ontology capturing
all relevant activities, artifacts, involved roles etc. and the conditional relations
between these. The meta model, as shown in Figure 1, contains the conceptual-
isation of the business process domain, that instead of using flow semantics to
capture who does what and when, is based on pre- and post-conditions. Each ac-
tivity may have pre-conditions that have to be met before it may be performed,
8 http://www.ontologyportal.org/

Case

ActivityRole

<Abstract>
Artifact

Time Limit

Object

Assigns

Creates

Performs

Decision

Decides

Post Condition

Requires Running
Requires Expired

Pre Condition

Requires Role

Requires
Available

Requires
Taken

Requires
Available

Requires
Completed

Document Appointment Note

Begins
Ends

Suspends
Resumes

Creates
Changes
Corrects
Deletes
Lookup

Subtypes

Fig. 1. Summary of the classes used to capture business processes

and post-conditions that capture what conditions have to be met in order for the
activity to be complete. Figure 2 contains an of example how this meta model
is used to capture the business process of applying for a grant.

<Case>
Grant Application

<Activity>
Accept

<Activity>
Archive

<Activity>
Assess

<Activity>
Publish

<Role>
Case Handler

<Document>
Rejection

Letter

<Document>
Application

Form

<Document>
Confirmation

Letter
<Decision>
Eligibility

<Time Limit>
Acceptible Response Time

<Object>
Grant Application

<Time Limit>
Retention

Period

RemovesCreates

BeginsEnds

Creates
[Eligibility=FALSE]DecidesRequires

CreatesAssigns

Begins Requires
Expired

Performs (if needed) Performs

Creates
[Eligibility=TRUE]

Fig. 2. An example of an grant application process

In [2], this example is discussed in more depth and the model from Figure 2
is verbalised using a pattern sentence approach. The result when verbalising the
example used throughout the paper with the pattern sentence approach is the
following.

1. The activity Publishing the Result may be performed if
(a) a document of type Document with Details is available.

2. The activity Publishing the Result is completed if
(a) a document of type Submission Form has been created.

Although the sentences generated have proven useful in practice, some additional
requirements exist in areas such as grammatical correctness and fluency. For
instance, the first sentence part is grammatically incorrect, as the label inserted
is a verb phrase in itself. Also, the pattern sentences approach proves not to scale
in terms of number of supported languages. Every grammar translation needs to
deal with all lexical aspects (and their peculiarities) of their specific language.

3.2 Differences between classes and instances

Within the field of knowledge representation, both classes and instances are
typically treated as equal means of expression when creating an ontology and
both can be used by the knowledge engineer as he sees fit to best capture the
conceptualisation of his choice.

In the use case presented in this paper however, class and instance informa-
tion are typically in separate, but linked ontologies and these ontologies differ
greatly in characteristics related to ownership and rate of change:

– Classes are chosen based on consensus across multiple parties, while the
instances are provided by individual parties without requiring consensus on
the data;

– The classes are often determined once and are fixed, whereas the instances
of these classes are introduced over time and may change often;

– Classes may use an ontology formalism as its native/original representation,
where instances often have existing databases or other information stores as
primary sources, and the ontology is used exclusively for sharing the data;

– The classes are typically created by knowledge engineers or other information
professionals, while instances are created by a wide range of people, who enter
data in the original databases, and might not deal with ontologies at all.

In the Be Informed use case provided throughout this paper, the product
contains default meta models consisting of the classes that are used in modelling.
Although these might be adjusted or extended in individual implementations,
this is typically done early in the design phase. An example of such a meta
model is shown in Figure 1. When adopting the product, the majority of effort
is spent on creating detailed models based on the classes in the meta model.
Meta models and their extensions are typically created by knowledge engineers,
while the models themselves are built by both knowledge engineers and domain
experts. Moreover, it is considered crucial that business users, who adopt the
complete model for validation, can make changes and updates.

The choices made in the lexicalisation/verbalisation of classes and instances
respectively, follow a similar pattern as the classes and instances themselves:

– In general the labels and lexical representations for the classes are created
alongside the ontology that contains the classes and may require guidelines

to be met. The labels of the instances are often chosen by people less or
unskilled in knowledge representation or may even originate from existing
databases. This compromises the coherent adherence to guidelines for the
lexical properties of instance labels;

– Classes may have complex lexical and grammatical consequences, and also
introduce sentence patterns and planning. Instances have only labels with
limited complexity at a lexical level.

The separation between reaching consensus on the types of things consid-
ered and identifying the individual things generalises well across other scenario’s
of both the use of ontologies and their verbalisation. For instance, ontologies
used in Linked Open Data typically expose these characteristics. An example of
this is the verbalisation of structured knowledge about 8000 artifacts from the
Gothenburg City Museum into natural language descriptions [10]: The concep-
tualisation of painters, paintings and materials is codified in an ontology with
classes, the facts about the individual paintings are exported out of a database
into ontologies with instances.

3.3 Practices in choosing labels

In practice, different styles of choosing labels are found when modellers are, for
instance, modelling and naming concepts within a business process model.

In practice, there is a difference between concepts that are commonly referred
to by a proper name (term) and concepts that do not have a term associated with
them and are referred to by description. For example, when modelling business
processes, the ontology typically contains activities. Some activities may have
names (terms), but more often a label describes what is done in the activity.
Examples are “Publishing the result”, “Publish the result” or “The result is
published” (when the activity is completed). This phenomenon also occurs in
multilingual contexts when a name for the concept exists in the source language
of a model but not in the target language, in which case some form of description
is necessary.

Another source of label choosing practices can, especially in business use of
ontologies, be found in the diverse background of the people involved in mod-
elling. Typically, the domain experts may have experience in other structured
conceptualisation approaches and the naming conventions or practices that come
with it. For instance, many information professionals have backgrounds in sys-
tems development disciplines and are familiar with techniques like UML and
Entity Relational modelling, influencing their naming practices.

Providing guidelines and practices for systematically choosing good labels
contributes to reducing the number of label variants used in modelling. How-
ever, for industry adoptability and robustness in practice, ontology verbalisation
techniques should be able to deal systematically with these challenges and prac-
tices, both in terms of the number of constraints required for accurate modelling
and also the implications of language variation and multilingualism for any given
ontology concept.

4 Ontology Verbalisation using GF and lemon

We present a multilingual ontology verbalisation approach that addresses the
challenges discussed in Section 3. It is based on the Grammatical Framework,
currently developed in the Molto Project9, and lemon, the Lexicon Model for
Ontologies, currently developed in the Monnet Project10.

Both projects have a strong focus on ontologies and multilingualism, and
complement each other well in our approach: GF provides sophisticated multi-
lingual grammar support while lemon provides state of the art ontology lexical-
isation techniques.

4.1 Introduction to lemon and GF

Lexicon Model for Ontologies, or lemon is a model for representing lexical
information about words and terms relative to an ontology on the Web. lemon
is what we term an ontology-lexicon in that it expresses how the elements of the
ontology, i.e. classes, properties, and individuals, are realised linguistically. The
model follows a principle called semantics by reference whereby it is assumed
that the (lexical) meaning of the entries in the lexicon are expressed exclusively
in the ontology. Hence the lexicon merely points to the appropriate concepts.
lemon is designed to be a basic model supporting the exchange of ontology-lexica
on the Semantic Web. The core of lemon contains the basic elements required to
define lexical entries and their association to their lexical forms and, moreover,
to concepts in the ontology representing their meaning. It consists of:

– Lexicon: This object represents the lexicon as a whole. It must be marked
with a language, and all objects in the lexicon belong to this language.

– Lexical Entry: An entry for a given lexicon is a container for one or sev-
eral forms. It also contains one or more meanings of a lexeme. All forms of
an entry must have the same part of speech. An entry may have multiple
meanings.

– Lexical Form: This is the inflectional form of an entry. It must have one
canonical form, but may have any number of other forms. Stems and other
partial morphological units can also be modeled as abstract forms.

– Representation: A lexical form may have several representations, ranging
from different orthographies, to phonetic representation as well as standard
written representation.

– Lexical Sense: This links a lexical entry to the reference in the ontology
i.e. a concept, property or instance.

– Component: A lexical entry may also be broken up into a number of com-
ponents.

The following example gives a simple lexicon with a single lexical entry:

9 http://www.molto-project.eu/
10 http://www.monnet-project.eu/

@prefix lemon: <http://www.monnet-project.eu/lemon#>.
@prefix bpo: <http://www.beinformed.com/resource/>.

:lexicon lemon:entry:adult_applicant;
lemon:language "en".

:adult_applicant
lemon:canonicalForm [lemon:writtenRep "Applicant is Adult"@en];
lemon:sense [lemon:reference bpo:adult_applicant].

This simple English lexicon has a single entry, with canonical form “Applicant
is Adult”, and a sense that refers to the entry in Be Informed Business Process
ontology.

The Grammatical Framework (GF) [11] is a formalism for describing mul-
tilingual grammars. A GF grammar consists of an abstract syntax, acting as a
semantic interlingua and a number of concrete grammars that verbalise the ab-
stract syntax in multiple languages. In this way the semantic level is the central
part of the grammar, connecting any language pair of concrete syntaxes.

Most GF grammars are used to describe fragments of natural language. The
largest and most general such grammar is the resource grammar library, which
contains resource grammars for 24 languages, and implements the most common
syntactic constructions (such as predication, complementation, etc.) for these
languages.

The resource grammar library supports the development of so-called appli-
cation grammars for more restricted domains by providing standard language-
specific technicalities so that they do not need to be described again in the new
(application) grammar. This makes it easier to develop application grammars
by assembling the primitive constructs from the resource grammar and obtain
syntactically-correct text in languages from the library.

In the work reported on in this paper GF is used to develop an application
grammar for the Be Informed use case, discussed in section 3.

4.2 Modular GF grammars based on decoupling of classes and
instances

The ontology verbalisation approach exploits the complementary strengths of GF
and lemon. GF is used to capture ontological information as well as the required
sentence structure while lemon is the source of concrete label information. The
approach is explained by using as example the Be Informed business process
ontology and the pre- and post-condition sentence patterns of [2]. The aim of
the business processes ontology in Figures 1 and 2 is to specify business processes
in terms of pre- and post-conditions, which in turn requires the verbalisation of
such conditions.

A challenge resulting from the strict separation of (ownership of) TBox and
ABox is that the lexical information required in verbalisation of the complete
ontology also needs modularisation along these boundaries and that restrictions

with respect to availability/feasibility of knowledge engineering to the different
ontology parts also apply to the lexical information associated with those parts.

The grammar modularisation follows the structure of the meta model in
Figure 1 (a similar approach was followed in [10]). The verbalisation proceeds
according to the sentence patterns described in [2]. In particular, each activity
may have pre-conditions and post-conditions verbalised as conditional statements
(“A if B”), where A and B are simple propositional statements with modalities,
as appropriate. All concept labels are to be verbalised as propositional statements
in accordance with specifications, as explicated in [2].

The modular layered approach to verbalisation is illustrated in Figure 3 by
means of the pre-condition triple

(Activity,Requires_Available,Artifact subtyped as Document).

Instance labels
Form chosen by modeler

Propositional statement

Conditional statement

Conditional statement
with modality

<Activity>
Intake

<Document>
Submission Form

requires
available

"intake" "submission form"

"the intake is completed" "the submission form is available"

"the intake is completed, if the submission form is available"

"the intake may be completed, if the submission form is available"

Ontology instances

lemon

ontology

grammatical
framework

Fig. 3. Layered verbalisation procedure

The TBox abstract syntax caters for the pattern sentence structure (the
conditional and propositional statements), the modalities, the concept classes
and the relations between them. The polarities and modalities are introduced
as separate functions, allowing for the addition of more modalities by merely
creating two additional functions per modality (positive and negative form),
using the primitive operation already defined. The (meta model) classes are
modelled as GF categories and the relations become GF functions with a return
type used for verbalisation, as shown in the code segment taken from the TBox
abstract syntax module:

cat
Activity; -- meta model type
Document; -- meta model type
Artifact; -- meta model type

Fragment; -- type for proposition
BIText; -- type for language generation

fun
requires_available : Activity -> Artifact -> Fragment;
subDocArtifact : Document -> Artifact;
FCan : Fragment -> BIText;

The conceptual modularisation of the grammar is completed by the ABox
abstract syntax, which uses the TBox abstract syntax, and contains the la-
bel/instance definitions (ABox information) as GF function declarations with
category types, for example,

AIntake : Activity;
SubmissionForm : Document;

The verbalisation of the information captured by the ontology, as well the
pattern sentences in which they may occur, is addressed in the concrete syntaxes
for English and Dutch. The linearisation categories for the (abstract syntax) cat-
egories provide detailed linguistic structure in terms of parts of speech etc, for
rendering correct verbalisations. Complex (GF record) types are used to facili-
tate label variants. The predicates that are built with transitive verbs (creates,
deletes, corrects, changes) are rendered in the passive voice, as required by the
Be Informed application. The TBox concrete syntax also provides primitives
for creating the main categories, for example mkActivity (see next section) for
Activity from basic parts of speech from the resource library, and hides the
implementation details from the users, thereby ensuring that the optimisations
are as seamless as possible.

The TBox concrete grammar (code segment below) provides the linearisation
of both the propositional and the conditional statements. In particular, the over-
loaded function mkFragm implements both the simple propositional statement (as
complete sentence pattern) (hasExt = False) and the conditional statement
(hasExt = true) by means of pattern matching on the number and types of
the arguments. The overloaded function mkBIText completes the verbalisation
by finally adding modality and polarity, as necessary. We show mkFragm and a
part of mkBIText by way of illustration.

Utt and S are GF resource grammar library categories for sentences, ques-
tions, etc. and declarative sentences, respectively, while Fragm is a user defined
complex (GF record) type. VV is the the resource grammar library category for
verb-phrase-complement verbs.

lincat
Activity = {noun : NP; subj : NP; vp : VP; hasVerb : Bool};
Document, Artifact = NP;

lin

requires_available ac ar = mkFragm ac.subj ac.vp (mkS (mkCl ar
(mkVP available_A)));
subDocArtifact d = d;
FCan frag = mkBIText frag positivePol may_VV;

oper
Fragm = {subj : NP; pred : VP; ext : {s : S; hasExt : Bool}};

ifExt : {s : S; hasExt : Bool} -> S -> S = \ext,s -> case
ext.hasExt of {
True => Sentence.SSubjS s if_Subj ext.s;
False => s
};

mkFragm = overload {
mkFragm : NP -> VP -> Fragm =
\np, vp ->
{subj = np;
pred = vp;
ext = {s = dontCareS; hasExt = False}};

mkFragm : NP -> VP -> S -> Fragm =
\np, vp, sub ->
{subj = np;
pred = vp;
ext = {s = sub; hasExt = True}};

};

mkBIText = overload {
mkBIText : Fragm -> Pol -> Utt =
\frag, pol ->
mkUtt (ifExt frag.ext (mkS pol (mkCl frag.subj frag.pred)));

.......

mkBIText : Fragm -> Pol -> VV -> Utt =
\frag, pol, vv ->
mkUtt (ifExt frag.ext (mkS pol (mkCl frag.subj
mkVP vv frag.pred))));

};

In the ABox concrete syntax the labels are defined according to the required
types using either provided primitives or basic parts of speech, for example,

AIntake = mkActivity (mkNP the_Quant intake_N);
DSubmissionForm = mkNP the_Quant (mkCN submission_N (mkNP form_N));

where the functions mkN, mkCN, mkNP, mkVP, mkCl, mkS, mkUtt, etc., and many
more, are available in the GF resource grammar library for supporting and fa-
cilitating application grammar development.

The function mkActivity, used in linearising the label AIntake, converts
the label “intake” to a propositional statement, where the verb to be used with
activities expressed as nouns or noun phrases is always “to complete’, i.e. “the
intake is completed” as prescribed by the meta model in Figure 1. We return to
the mkActivity function in Section 4.3 where the handling of label variants is
discussed.

The final (customary) component in the suite of modules that constitute a
GF application grammar is a dictionary of application specific lexical items that
do not occur in the resource grammar lexicon and additional linguistic constructs
that are language specific and/or are not included in the resource grammar, for
example, verb nominalisation. Examples (showing the abstract as well as the
concrete syntax) are as follows:

oper
intake_N:N;
submission_N:N;
form_N:N;

and

oper
intake_N = mkN "intake";
submission_N = mkN "submission";
form_N = mkN "form";

An example of a pre-condition triple and its verbalisation in English and
Dutch by means of the GF grammar is follows:
(Activity, Requires Available, Artifact, subtyped as Document), instanti-
ated with the labels “intake” and “submission form”, is rendered as the pre-
condition, containing the propositional statements “the intake may be com-
pleted” and “the submission form is available”, with modality added:

The intake may be completed , if the submission form
is available.
De inname kan worden afgerond , als het aanvraagformulier
beschikbaar is.

Other typical examples of linearisations are as follows:

Pre-conditions:

44b may be completed , if the document with details
is available.
44b kan worden afgerond , als het document met details
beschikbaar is.

Post-conditions:

If 44b has been completed , the submission form has been created.
Als 44b afgerond is , is het aanvraagformulier aangemaakt.

Propositional statements (intermediate layer):

44b has been completed.
44b is afgerond.

In summary, the modularisation of the grammar was illustrated by showing
how concepts and relations between them are introduced as categories and func-
tions in the TBox abstract syntax and reused in the in the ABox abstract syntax
to instantiate abstract instances. The concrete syntaxes were shown to provide
linearisations, using different variants, for the instance labels, the propositional,
and the conditional statements that consitute the pre- and post-conditions in
the ontology.

4.3 Dealing with different variations of labels

In the previous section the focus was on modularisation as a mechanism to
support efficient and effective ontology development. By separating the TBox
and ABox information in different grammar modules the modeller is allowed to
concentrate on application dependent information while generic business process
modelling support is provided by the grammar. In this section we discuss the
extent to which the BI grammar may allow for label variants and what kinds of
variation is accommodated at present.

Basically, the grammar allows two broad kinds of labels. Firstly labels in
the form of nouns or compound nouns (names or terms) are permitted, for
example, “Intake” and “Equality principle”. Secondly, labels may take the form
of a proposition such as “The Result is published” or other verb oriented style
labels such as “Publishing the result” or “Publish the result”.

While allowing the modeller some freedom of choice in label selection, the
verbalisation of label variants that refer to the same concept or relation in the
ontology should be unique.

The following code fragment from the TBox concrete syntax shows how some
of these design choices may be implemented:

mkActivity = overload {
mkActivity: N -> V2 -> NP -> Activity = \n,v,o -> lin Activity {

noun = mkNP the_Quant (mkCN n (mkAdv of_Prep o));
subj = o;
vp = passiveVP v;
hasVerb = True

};
mkActivity: V2 -> NP -> Activity = \v,o -> lin Activity {

noun = nominalize (mkVPSlash v) o;

subj = o;
vp = passiveVP v;
hasVerb = True

};
mkActivity: NP -> Activity = \o -> lin Activity {

noun = o;
subj = o;
hasVerb = False

}
};

In this way, the ABox concrete syntax may be used to create an object of type
Activity by, for example, either providing an NP for simple cases like “Intake”
or a V2 or an object NP for labels such as “Publishing the result” and “Publish
the result”.

There are a number of other fields that are used in the English TBox con-
crete syntax that ensure an optimized natural language generation such as “The
Results are published” or “Intake is completed if the results are published”, but
these details are just handled in the grammar, and the users of the ABox syntax
do not need to be aware of them.

It should be noted that these choices of implementation are, to some extent,
language specific since in labels of the latter kind the English gerund is used
while in Dutch the infinitive form of the verb plus “van” is customary.

In the following example the label variant “publish the result” is rendered as
in the sentences below:

Post-condition triple:

(Activity, Creates_Artifact, Document)

Linearisation:

If the result has been published , the submission form
is available.
Als het resultaat gepubliceerd is , is het aanvraagformulier
beschikbaar.

4.4 Multilingual aspects

In the GF grammar the multilingual correspondence of the bilingual system
is via the ontological labels. For instance, “Publishing the result” in English
corresponds to “Publiceren van het resultaat” in Dutch because they both map to
the instance APublishingOfResult. However, word-wise there is no one-to-one
correspondence, since this would not scale up when adding more languages and
extending the ontology with more instances. From this perspective it resembles
the lemon notion of multilingualism and supports the automated mapping from
lemon to GF, as discussed in a subsequent section.

Moreover, since the TBox syntax mainly uses the resource library and aligne-
able primitives from there, it can be abstracted in a functor, so that the new
languages can inherit it, at least partially. In this way, adding a new language
would be a simpler process, since it would mainly require the writing of a new
lexicon and translating the instances from the ABox concrete syntax. An inves-
tigation into this aspect forms part of future work.

4.5 Generating the instance grammars from lemon

We reiterate that the exploratory work presented in this paper focuses on three
aspects of modular ontology verbalisation, as also illustrated in Figure 3. In
section 4.2 we addressed the modularisation of the GF grammars, used for the
verbalisation, in accordance with the modular ontologies. It was noted that the
labour intensive component of the product is the creation of the ABox grammars
(that contain instances and their labels) and that the flexibility in specifying
labels is of strategic importance. Section 4.3, therefore, focused on label variants
currently allowed by the GF grammar. In this section we now briefly turn our
attention to the third aspect viz. an automated way of populating the ABox
grammars by making use of lemon. The approach is based on the observation
that the lemon entries contain all the essential information required to construct
GF lexicon entries and linearisation rules for the instance labels in the ABox
grammars.

We illustrate this by means of an example in which essential parts of the lin-
guistic information, necessary to create an instance label, are shown. We consider
the entry for the instance label “Sketch of the situation”, which is represented
as a lemon decomposition:

#Sketch of the situation
lemon:decomposition (:sketch_component :prep_component

:det_component :sit_component);

lemon:phrase_Root
[lemon:constituent :NP;
lemon:edge [lemon:constituent :NN; lemon:leaf:sketch_component];
lemon:edge [lemon:constituent :PP;
lemon:edge [lemon:constituent :P; lemon:leaf:prep_component];
lemon:edge [lemon:constituent NP;
lemon:edge [lemon:constituent :DET; lemon:leaf:det_component];
lemon:edge [lemon:constituent :NN; lemon:leaf:sit_component

]]]];

:sketch_component lemon:element sketch.
:sketch a lemon:Word .
:sketch isocat:partOfSpeech isocat:noun .

:prep_component lemon:element of.

:of a lemon:Word .
:of isocat:partOfSpeech isocat:preposition .

:det_component lemon:element the.
:the a lemon:Word .
:the isocat:partOfSpeech isocat:determiner.

:sit_component lemon:element situation.
:situation a lemon:Word .
:situation isocat:partOfSpeech isocat:noun .

It consists of a phrase Root entry which describes the syntactic decomposi-
tion of the entry. The lemon entry is decomposed into a noun phrase, in turn
decomposed into a noun, a preposition, a determiner and another noun. Each
component in the lemon decomposition is comprised of elements, for example
the preposition of a the noun situation.

In GF the same information is encoded as follows, making use of functions
from the resource grammar library:
ABox abstract syntax:
DSketchOfSituation : Document where Document is a class in the ontology
and a category in GF.
ABox concrete syntax:
DSketchOfSituation = mkNP a Quant (mkCN sketch N (PrepNP of Prep
(mkNP the Det situation N))) where mkNP, mkCN and PrepNP are functions
from the resource grammar library.
Dictionary abstract syntax: sketch N : N and situation N : N
Dictionary concrete syntax: sketch N = mkN ‘‘sketch’’ and
situation N = mkN ‘‘situation’’.

The constituent structure (syntax tree) of the label “Sketch of the situation”
is given in the first part of the lemon entry and by the GF ABox concrete syntax
entry, while the lexical information is available in the second part of the lemon
entry and the GF dictionary entry. An appropriate generalisation of this corre-
spondence (mapping) will cover all possible lemon entry syntax trees and their
GF equivalents. This will form the basis for an automated procedure to generate
ABox concrete syntax entries for instance labels from lemon and is part of our
future work. Furthermore, this approach is well suited to multilingual entries
in lemon and their representation and verbalisation in GF, the investigation of
which also forms part of future work.

5 Discussion and Future Work

In this paper we demonstrated how GF and lemon can be combined to provide
multilingual verbalisation in a specific class of problems, where ontologies are
modularised into ontologies containing consensus based classes and (multiple)
instance ontologies. In these scenarios, the instances are typically not created

by knowledge engineers and are often based on information stores other than
ontologies.

We showed an approach to grammar development that leads to grammars
being modular along the same boundaries as the ontologies, with the grammar
modules also having the same dependency structure as the ontology parts.

Additionally, we introduced mechanisms in the TBox grammar that deal
automatically with the different styles of label choosing that are encountered
in practice. This is particularly relevant in cases where different disciplines are
involved in creating the instances and in multilingual cases where concepts may
have a name in one language and can only be referenced by describing them in
another language.

By generating the instance grammars from the ontology labels encoded in
lemon, the need for GF engineering at the instance level is reduced. This is
crucial for the adoption of this mechanism, as the instance data either already
exists in databases or is created by people who may not be expected to engineer
GF representations of the labels they choose.

In terms of multilingualism this approach supports and suggests two ways
of verbalisation. In cases where translations of the labels are available inside
lemon lexica, multiple ABox syntaxes can be generated for the different lan-
guages. This approach has the benefit that labels may differ quite significantly
across languages, but obviously requires translation of the ontology. Alterna-
tively, translation could be performed at the GF grammar level if the label
styles align across languages. In cases where aligned dictionary grammars are
available, this approach could prove particularly efficient.

Future work also includes the extension of this approach to include different
levels of paraphrasing and advanced sentence planning in order to achieve im-
proved fluency in and across sentences. Finally, we envisage investigating label
choosing practices as encountered amongst professionals in the different fields
that may benefit from a framework as described in this paper. The importance
of robustness under lexical variance as found in real world applications suggests
an in depth study of label style variation and its impact on ontology verbalisa-
tion.

Acknowledgements The authors wish to gratefully acknowledge the support
for this work by the European Commission (EC). This work was partially funded
by the EC within the EU FP7 Multilingual Ontologies for Networked Knowl-
edge (MONNET) Project under Grant Agreement No. 248458 and the MOLTO
Project under Grant Agreement No. 247914.

References

1. Heller, R., Teeseling, F.: Knowledge applications for life events: How the dutch
government informs the public about rights and duties in The Netherlands. In:
Proceedings of the 6th European Semantic Web Conference on The Semantic Web:
Research and Applications. ESWC 2009 Heraklion, Berlin, Heidelberg, Springer-
Verlag (2009) 846–850

2. Van Grondelle, J.C., Gülpers, M.: Specifying flexible business processes using pre
and post conditions. In: PoEM. Volume 92 of Lecture Notes in Business Informa-
tion Processing., Springer (2011) 38–51

3. Buitelaar, P., Cimiano, P., Haase, P., Sintek, M.: Towards linguistically grounded
ontologies. In: The Semantic Web: Research and Applications. (2009) 111–125

4. Montiel-Ponsoda, E., de Cea, G., Gómez-Pérez, A., Peters, W.: Modelling multi-
linguality in ontologies. In: Proceedings of the 21st International Conference on
Computational Linguistics (COLING). (2008)

5. Francopoulo, G., George, M., Calzolari, N., Monachini, M., Bel, N., Pet, M., Soria,
C.: Lexical markup framework (LMF). In: Proceedings of the 2006 International
Conference on Language Resource and Evaluation (LREC). (2006)

6. Kemps-Snijders, M., Windhouwer, M., Wittenburg, P., Wright, S.: ISOcat: Cor-
ralling data categories in the wild. In: Proceedings of the 2008 International Con-
ference on Language Resource and Evaluation (LREC). (2008)

7. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowl-
edge Representation. In Baroglio, C., Bonatti, P.A., Ma luszyński, J., Marchiori,
M., Polleres, A., Schaffert, S., eds.: Reasoning Web, Fourth International Summer
School 2008. Number 5224 in Lecture Notes in Computer Science, Springer (2008)
104–124

8. Power, R., Scott, D., Evans, R.: What you see is what you meant: direct knowl-
edge editings with natural language feedback. In Prade, H., ed.: 13th European
Conference on Artificial Intelligence (ECAI’98). John Wiley and Sons, Chichester,
England (1998) 677–681

9. Angelov, K.A., Enache, R.: Typeful ontologies with direct multilingual verbaliza-
tion. In: Controlled Natural Languages Workshop (CNL 2010), Marettimo, Italy
(2011)

10. Dannélls, D., Enache, R., Damova, M., Chechev, M.: Multilingual online generation
from semantic web ontologies. In: WWW2012. EU projects track, Lyon, France
(04/2012 2012)

11. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011) ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-
7 (Cloth).

